技术不足导致移动互联网难以催生出更多的新应用和商业模式,为突破瓶颈,新一轮更激动人心、更值得期待的技术革命风暴已经诞生,将成为未来10年乃至更长时间内IT产业发展的焦点,它的名字叫做“人工智能”(AI)。
只有人工智能才能为“万物互联”之后的应用问题提供最完美的解决方案,它将成为IT领域最重要的技术革命,目前市场关心的IT和互联网领域的几乎所有主题和热点(智能硬件、O2O、机器人、无人机、工业4.0),发展突破的关键环节都是人工智能。
人工智能是指计算机系统具备的能力,该能力可以履行原本只有依靠人类智慧才能完成的复杂任务。硬件体系能力的不足加上发展道路上曾经出现偏差,以及算法的缺陷,使得人工智能技术的发展在上世纪80—90年代曾经一度低迷。近年来,成本低廉的大规模并行计算、大数据、深度学习算法、人脑芯片4大催化剂的齐备,导致人工智能的发展出现了向上的拐点。
国际IT巨头已经开始在人工智能领域频频发力,一方面网罗顶尖人才,一方面加大投资力度,人工智能新的春天已经到来。自然语言处理、计算机视觉、规划决策等AI细分领域近期进展显著,很多新的应用和产品已经惊艳亮相。
由于技术的复杂度,未来5-10年内,专用领域的智能化是AI应用的主要方向,在更远的将来,随着技术的进一步突破,通用领域的智能化有望实现。无论是专用还是通用领域,人工智能都将围绕“基础资源支持-AI技术-AI应用”这三层基本架构形成生态圈。
在专用领域的智能化阶段,有能力的企业都希望打通三层架构。他们有的将从上往下延伸,如苹果、海康威视、小米等智能硬件企业;有的试图从下往上拓展,如百度、谷歌、IBM等互联网和IT的巨头,以及科大讯飞、格灵深瞳等AI技术新贵。产业格局更多地表现出“竞争”而非“合作”,整个行业依然处于野蛮生长的初期阶段。我们认为,该阶段最值得投资的是已经具备先发优势的AI企业,无论他目前处于哪一层都可以。
在未来通用智能时代,进入门槛最高,护城河最宽的是底层AI资源支持的平台企业;其次是技术层中在细分领域具备核心竞争力的领先企业;门槛最低的是应用层的企业,但消费电子的产品属性也将允许差异化竞争的空间。除了自然语言处理、计算机视觉等AI技术在某些领域的直接应用,人工智能更大的影响在于将重塑生活服务、医疗、零售、数字营销、农业、工业、商业等各行各业,并将引发新一轮IT设备投资周期。智能化的大潮即将来袭,万亿元的市场规模值得期待。
我们从两个维度选取人工智能产业的A股投资标的:首先是直接提供AI技术或有关设备的公司,然后是利用AI技术为不同行业提供解决方案的公司。重点推荐:科大讯飞、海康威视、软控股份、雷柏科技、中科曙光、东方网力、天泽信息、美亚柏科、拓尔思、安硕信息。
1.新技术革命登场,IT发展焦点将从互联网转向人工智能
发轫于2007年的移动互联网浪潮已经席卷全球,极大地改变了我们的生存状态。然而,就在资本市场热切地期待移动互联网催生出更多新应用服务、更多新商业模式的时候,由技术水平不足导致的发展瓶颈已然出现。与此同时,为突破上述瓶颈,新一轮更激动人心、更值得期待的技术革命风暴已经诞生,将成为未来10年乃至更长时间内IT产业发展的焦点,将再次并更加彻底地颠覆世界。这一轮技术革命风暴,它的名字叫做“人工智能”(Artificial Intelligence,以下简称AI)。
1.1 基于互联网的应用服务发展已遭遇技术瓶颈,AI将成开锁金钥匙
基于PC的互联网、基于手机和平板电脑的移动互联网以及基于各种其他设备的物联网,其本质是解决了“连接”问题:连接人与人、人与物以及物与物,并且在连接的基础上创造出新的商业模式。以国内BAT三巨头为例,百度完成的是人与信息的对接,商业模式以网络广告为主;阿里解决的是人与商品的对接,电商是其商业模式;腾讯则实现了人与人的对接,依靠强大的免费社交软件吸引庞大的用户群,在此基础上利用增值业务和游戏来实现货币化。
尽管互联网的普及打造了包括谷歌、亚马逊、百度、阿里、腾讯、京东等一批巨头以及数量更为庞大的中小企业,基于网络的创新应用和服务类型也多种多样,但技术瓶颈的制约已经越来越明显:生活方面需求痛点的解决、生产领域具有适应性和资源效率的智慧工厂的建立、物流体系中更加方便快捷的配送方式建设等问题,都面临智能化程度不足带来的障碍。只有人工智能才能为“万物互联”之后的应用问题提供最完美的解决方案。
人工智能的价值如此重要,以至于我们可以毫不夸张地说,它将成为IT领域最重要的技术革命,目前市场关心的IT和互联网领域的几乎所有主题和热点(智能硬件、O2O、机器人、无人机、工业4.0),发展突破的关键环节都是人工智能。
下面我们将通过一些例子和应用场景来更形象具体地展示上述瓶颈以及AI的重要性:
1.1.1 智能冰箱还不能告诉我们做什么
由于生活节奏加快人们的空闲时间大为减少,做家务的时间日益显得不足,我们需要一款聪明的冰箱,让冰箱告诉我们做什么。来自奥维咨询的《中国家用冰箱食品浪费调查报告》显示,“每个家庭平均每年发生176次食物浪费现象。70%受访者表示,造成浪费的主要原因是一次购买太多和放入冰箱后忘记。智能冰箱的出现,不仅可以自行“清理门户”,采购新鲜食品,还能统筹安排,减少食材浪费,制作个性化食谱。它会根据食材新鲜与否,把不新鲜的食材调动到距离冰箱门最近的地方,提醒主人“它该吃了”。此外,智能冰箱能对用户的膳食合理性进行分析,制作菜谱。同时提示需要补充的食材,如果与生鲜电商联网的话,可以自动选择送货上门,直接实现食物的配送发货收获自动化和智能化。2014年美菱率先推出全球首台云图像识别智能冰箱ChiQ,,突破全球智能冰箱技术门槛,该冰箱具备变频功能,可以用语音搜索、自动推荐等多种方式进行食谱推荐,并实现手机的远程查看和控制。
智能冰箱功能法的升级,提升用户体验和价值,背后的最大核心是自动识别技术的突破。图像识别技术通过图像采集系统得到食材图片,运用图像识别算法,转化成食品的信息列表。而通过图像识别技术,判断食材的种类是实现冰箱智能化的拐点。
可见,不是用户对智能家居的需求不存在,而是现有的技术无法支撑家居的智能化,这个瓶颈无法突破,智能家居永远是纸上谈兵。那么,解决这个问题的钥匙在哪里?人工智能技术的突破:图像识别背后的底层技术就来自于人工智能的算法和应用!
1.1.2 O2O尚未实现生活服务智能化
试想这样一个场景,你想选择一个地方和朋友吃饭,首先你会打开一个应用,在这个过程中它会自动确定你所在的位置,然后你通过语音开始向其发出请求“我想在这附近找一家中式餐厅,下午将要与朋友一起就餐,消费价格适中。”应用根据你发出的请求及过往的生活习惯为你寻找到数十家备选方案优选列表,然后你可以根据兴趣与爱好选择直接确定方案,或者实时打开查看各家的类型、折扣、评分、环境、位置、菜品、用户评价等综合信息并进行筛选,这些信息综合在一起形成了你对某家餐厅的判断和最终的决策。这时你可以就一些问题与餐厅的服务人员进行实时的沟通,然后交付押金轻松的进行预订。预订好了餐厅之后,通过语音控制,你可以将信息转发给朋友。当你到了该出发赴约的时候,这个应用开始提醒你,并可以选择是否开启地图语音导航模式,为你提供位置和路线服务。从本质上说,消费者和商户存在各自信息获取不对称的问题,而O2O在于把服务业互联网化,将商户与消费者之间连接的更好,让信息不对称的问题都能解决,这不仅能够帮助商户,也能够帮助消费者。消费者对O2O的最大诉求主要是在前端信息的检索和获取,而商家的目的在于持续获取消费者,这主要通过前端提供消费者信息影响其购买决策,并通过后期客户管理增强与用户关系。
互联网的O2O商业模式气势汹汹的颠覆传统行业,似乎发展到现在好像开始止步不前了。目前点评网站、地图导航、预定网站、优惠券网站等很好地满足了消费者信息获取来源,但移动搜索引擎却未能很好满足消费者检索的需求,使他们可以方便地查找餐厅以及优惠地享受服务。综合来看,未来的O2O会是一个融合线下信息聚合、语音识别、自然语言解析、搜索引擎、点评信息聚合、预订服务、地图导航、NFC、CRM、语音以及实时沟通等功能为一体的基于位置的服务平台。然而,至今仍然悬而未决的技术瓶颈是:自然语言的解析。如何通过对用户的自然语言(文本+语音)等数据,结合知识图谱,推理出用户的需求并精准的推送用户所需的本地化生活服务?这扇大门的钥匙也是在人工智能技术的突破!
2.人工智能技术“奇点”到来
在宇宙大爆炸理论中,“奇点”是指由爆炸而形成宇宙的那一点,即宇宙从无到有的起点。而在美国著名科学家雷·库兹韦尔(Ray·Kurzweil:发明了盲人阅读机、音乐合成器和语音识别系统;获9项名誉博士学位,2次总统荣誉奖;著有畅销作品《奇点临近》,现任奇点大学校长)的理论中,“奇点”是指电脑智能与人脑智能相互融合的那个美妙时刻。我们认为,这个美妙时刻正在到来。
2.1什么是人工智能:从“smart”到“intelligent”
目前市场上所谓“智能”的设备或概念很多,从智能手机到智能家居等,但这些“智能”实际上是“smart”的含义,即灵巧;真正意义上的智能应该是“intelligent”的含义。
“人工智能”一词最初是在1956年达特茅斯学会上提出的。从学科定义上来说,人工智能(ArtificialIntelligence)是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。人工智能是计算机科学的一个分支,它企图了解智能的实质,并生产出一种新的能以人类智能相似的方式做出反应的智能机器。
人工智能的概念和定义有多种,下图中沿两个维度排列了AI的8种定义。顶部的定义关注思维过程和推理,而底部的定义强调行为。左侧的定义根据与人类表现的逼真度来衡量成功与否,而右侧的定义依靠一个称为“合理性”(Rationality)的理想的表现量来衡量。
如果从比较容易理解的角度来概括的话,人工智能是指计算机系统具备的能力,该能力可以履行原本只有依靠人类智慧才能完成的复杂任务。
人工智能的应用领域主要包含以下几个方面的内容:
自然语言处理(包括语音和语义识别、自动翻译)、计算机视觉(图像识别)、知识表示、自动推理(包括规划和决策)、机器学习、机器人学
2.2人脑的精密结构难以复制,人工智能技术曾一度受阻
2.2.1超大规模并行结构使得人脑功能强劲
人类的大脑中有数百至上千亿个神经细胞(神经元),而且每个神经元都通过成千上万个“突触”与其他神经元相连,形成超级庞大和复杂的神经元网络,以分布和并发的方式传导信号,相当于超大规模的并行计算(Parallel Computing)。因此尽管单个神经元传导信号的速度很慢(每秒百米的级别,远低于计算机的CPU),但这种超大规模的并行计算结构仍然使得人脑远超计算机,成为世界上到目前为止最强大的信息处理系统。
2.2.2计算机的传统结构制约人工智能的发展
美籍匈牙利科学家冯·诺依曼(John Von·Neumann)是数字计算机之父,首先提出了计算机体系结构的设想,目前世界上绝大多数计算机都采取此种结构,它也被称之为冯·诺依曼体系结构。简单来说,冯·诺依曼体系结构的基本特征有以下几点:
1、采用存储程序方式,指令和数据不加区别混合存储在同一个存储器中,指令和数据都可以送到运算器进行运算,即由指令组成的程序是可以修改的。
2、存储器是按地址访问的线性编址的一维结构,每个单元的位数是固定的。
3、指令由操作码和地址组成。操作码指明本指令的操作类型,地址码指明操作数和地址。操作数本身无数据类型的标志,它的数据类型由操作码确定。
4、通过执行指令直接发出控制信号控制计算机的操作。指令在存储器中按其执行顺序存放,由指令计数器指明要执行的指令所在的单元地址。指令计数器只有一个,一般按顺序递增,但执行顺序可按运算结果或当时的外界条件而改变。
5、以运算器为中心,I/O设备与存储器间的数据传送都要经过运算器。
6、数据以二进制表示。
值得特别指出的是,近来基于GPU(图形处理器)的云计算异军突起,以远超CPU的并行计算能力获得业界瞩目。
CPU和GPU架构差异很大,CPU功能模块很多,能适应复杂运算环境;GPU构成则相对简单,目前流处理器和显存控制器占据了绝大部分晶体管。CPU中大部分晶体管主要用于构建控制电路(比如分支预测等)和高速缓冲存储器(Cache),只有少部分的晶体管来完成实际的运算工作;而GPU的控制相对简单,而且对Cache的需求小,所以大部分晶体管可以组成各类专用电路、多条流水线,使得GPU的计算速度有了突破性的飞跃,拥有了惊人的处理浮点运算的能力。现在CPU的技术进步正在慢于摩尔定律,而GPU的运行速度已超过摩尔定律,每6个月其性能加倍。
CPU的架构是有利于X86指令集的串行架构,从设计思路上适合尽可能快的完成一个任务;对于GPU来说,它最初的任务是在屏幕上合成显示数百万个像素的图像——也就是同时拥有几百万个任务需要并行处理,因此GPU被设计成可并行处理很多任务,天然具备了执行大规模并行计算的优势。
现在不仅谷歌、Netflix用GPU来搭建人工智能的神经网络,Facebook、Amazon、Salesforce都拥有了基于GPU的云计算能力,国内的科大讯飞也采用了GPU集群支持自己的语音识别技术。GPU的这一优势被发现后,迅速承载起比之前的图形处理更重要的使命:被用于人工智能的神经网络,使得神经网络能容纳上亿个节点间的连接。传统的CPU集群需要数周才能计算出拥有1亿节点的神经网的级联可能性,而一个GPU集群在一天内就可完成同一任务,效率得到了极大的提升。另外,GPU随着大规模生产带来了价格下降,使其更能得到广泛的商业化应用。
2.3.2大数据训练可以有效提高人工智能水平
机器学习是人工智能的核心和基础,是使计算机具有智能的根本途径,其应用遍及人工智能的各个领域。该领域的顶级专家Alpaydin先生如此定义:“机器学习是用数据或以往的经验,以此优化计算机程序的性能标准。2.3.3“深度学习”技术的出现
“深度学习”是机器学习研究中的一个新的领域,它模拟人类大脑神经网络的工作原理,将输出的信号通过多层处理,将底层特征抽象为高层类别,它的目标是更有效率、更精确地处理信息。深度学习自2006年由Geoffrey Hinton教授和他的两个学生被提出后,使得机器学习有了突破性的进展,极大地推动了人工智能水平的提升。2013年,《麻省理工技术评论》把它列入年度十大技术突破之一。
人脑具有一个深度结构,认知过程是逐步进行,逐层抽象的,能够层次化地组织思想和概念。深度学习之所以有如此大的作用,正是因为它较好地模拟了人脑这种“分层”和“抽象”的认知和思考方式。
深度学习的实质,是通过构建具有很多隐层的机器学习模型和海量的训练数据,来学习更有用的特征,从而最终提升分类或预测的准确性。因此,“深度模型”是手段,“特征学习”是目的。区别于传统的浅层学习,深度学习的不同在于:1)强调了模型结构的深度,通常有5层、6层,甚至10多层的隐层节点;2)明确突出了特征学习的重要性,也就是说,通过逐层特征变换,将样本在原空间的特征表示变换到一个新特征空间,从而使分类或预测更加容易。与人工规则构造特征的方法相比,利用大数据来学习特征,更能够刻画数据的丰富内在信息。
深度学习使得人工智能在几个主要领域都获得了突破性进展:在语音识别领域,深度学习用深层模型替换声学模型中的混合高斯模型(Gaussian Mixture Model, GMM),获得了相对30%左右的错误率降低;在图像识别领域,通过构造深度卷积神经网络(CNN),将Top5错误率由26%大幅降低至15%,又通过加大加深网络结构,进一步降低到11%;在自然语言处理领域,深度学习基本获得了与其他方法水平相当的结果,但可以免去繁琐的特征提取步骤。可以说到目前为止,深度学习是最接近人类大脑的智能学习方法。
深圳茂晨热管理技术有限公司
联系人:周振业( Zhou)
手机(MB):13714069469
电话(Tel):0755-23346821
邮箱(Email):zzy1200@163.com
QQ:168261159
微信(WeChat):ROKE1006
公众号: 茂源新材
1688店铺:深圳茂晨热管理技术有限公司